Optimization Theory MT 610

2011/12 Semester I

Evolutionary Algorithms

©2012 St. John's University of Tanzania

Metaheuristics

- Recall heuristic methods find "good enough" solutions by successively improving on the current solution
- Two categories
 - Trajectory methods a single solution
 - Population methods multiple, simultaneous solutions
- We've seen trajectory methods with Simulated Annealing and Tabu Search

Population Methods

- Differ from trajectory methods
 - Maintain a sample of candidate solutions rather than a single candidate solution
- Changes to one solution affect them all
 - Poor solutions rejected / new created
 - Remaining solutions tweaked for improvement
- Most mimic biological systems
 - Evolutionary Computation \rightarrow Evolutionary Algorithm
 - Evolution Strategies
 - Genetic Algorithms

Common Terms

individual	a candidate solution					
child and parent	a <i>child</i> is the Tweaked copy of a candidate solution (its <i>parent</i>)					
population	set of candidate solutions					
fitness	quality					
fitness landscape	quality function					
fitness assessment or evaluation	computing the fitness of an individual					
selection	picking individuals based on their fitness					
mutation	plain Tweaking. This is often thought as "asexual" breeding.					
recombination or crossover	A special Tweak which takes two parents, swaps sections of					
	them, and (usually) produces two children. This is often					
	thought as "sexual" breeding.					
breeding	producing one or more children from a population of parents					
	through an iterated process of selection and Tweaking (typically					
	mutation or recombination)					
genotype or genome	an individual's data structure, as used during breeding					
chromosome	a genotype in the form of a fixed-length vector					
gene	a particular slot position in a chromosome					
allele	a particular setting of a gene					
phenotype	how the individual operates during fitness assessment					
generation	one cycle of fitness assessment, breeding, and population re-					
	assembly; or the population produced each such cycle					

Abstraction Generational EA

Algorithm 17 An Abstract Generational Evolutionary Algorithm (EA)

- 1: $P \leftarrow$ Build Initial Population
- 2: Best $\leftarrow \Box$

3: repeat

- AssessFitness(P) 4:
- for each individual $P_i \in P$ do 5
- if $Best = \Box$ or Fitness(P_i) > Fitness(Best) then \triangleright Remember, Fitness is just Quality 6:
- Best $\leftarrow P_i$ 7:

```
P \leftarrow \mathsf{Join}(P, \mathsf{Breed}(P))
8:
```

- 9: until Best is the ideal solution or we have run out of time
- 10: return Best

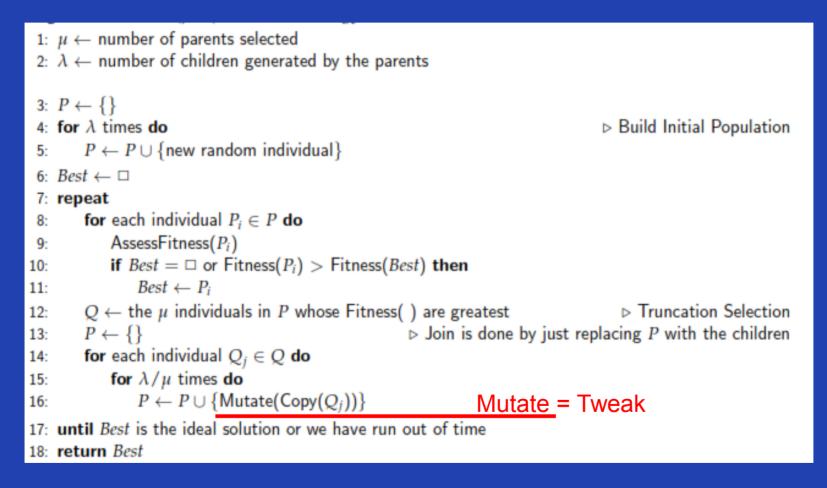
▷ □ means "nobody yet"

Population Initialization

- Create λ individuals "at random"
- Likely to know "good" regions so
 - Bias random generation to favor those regions
 - Seed initial population with specific individuals
- Do not overly bias / seed, random is good
- Do not include duplicates in the population
 - Techniques simplify that

Evolutionary Strategy: μ , λ

• Developed by Ingo Rechenberg and Hans-Paul Schwefel at the Technical University of Berlin in the mid 1960s.



The Knobs for Tweaking

- The $\mu,\,\lambda$ algorithm has 3 knobs to adjust
 - Size of λ
 - Sample size of each population
 - Size of µ, the number of parents selected
 - How selective is the algorithm
 - μ/λ low means more exploitative, only the best survive
 - Degree of *Mutation*
 - Larger the noise in the tweaking, the more random the children, regardless of selectivity $\boldsymbol{\mu}$

Mutation

- May be considered *unary reproduction*
 - Hence some children are recombinations of two parents and some are mutations of a single parent
- Decision variables converted to a string of binary digits
- Mutation is random changing of bits in the string, i.e. the bits are like chromosomes
 - Example 4-bit integer, $10 \rightarrow 1010$
 - Mutate one bit to $1110 \rightarrow 14$

Evolutionary Strategy: $\mu + \lambda$

1: $\mu \leftarrow$ number of parents selected 2: $\lambda \leftarrow$ number of children generated by the parents 3: $P \leftarrow \{\}$ 4: for λ times do $P \leftarrow P \cup \{\text{new random individual}\}$ 5 6: Best $\leftarrow \Box$ 7: repeat for each individual $P_i \in P$ do 8: AssessFitness (P_i) **9**if $Best = \Box$ or $Fitness(P_i) > Fitness(Best)$ then 10: Best $\leftarrow P_i$ 11: $Q \leftarrow$ the μ individuals in P whose Fitness() are greatest 12: $P \leftarrow O$ \triangleright The Join operation is the only difference with (μ, λ) 13: for each individual $Q_i \in Q$ do 14: for λ/μ times do 15: $P \leftarrow P \cup \{\mathsf{Mutate}(\mathsf{Copy}(Q_i))\}$ 16: 17: until Best is the ideal solution or we have run out of time 18: return Best

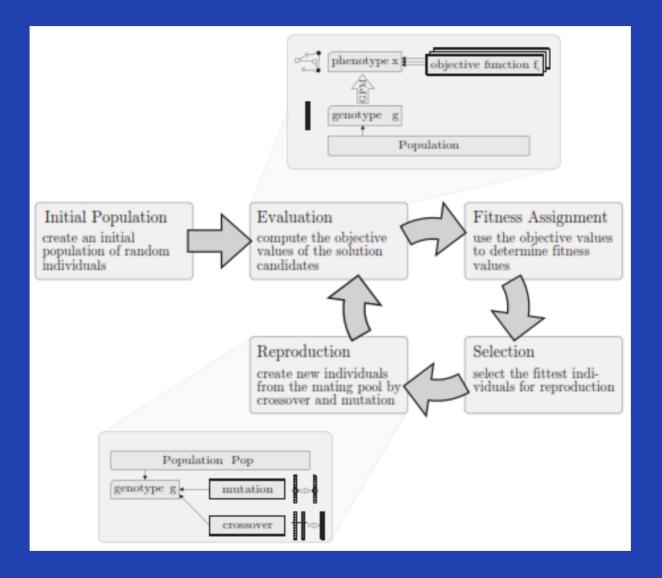
Strategy Difference

- First case, μ , λ
 - Children replace parents
- Second case, $\mu + \lambda$
 - High-fit parents persist
- 2nd is more exploitative, but with a risk
 - Sufficiently fit parent may defeat others in the population and solution may converge too quickly to a local minimum, not a global

Genetic Algorithm

- Invented in 1970's by John Holland, University of Michigan
- Similar to μ, λ EA
- Difference in how selection and breeding take place
 - EA: Selects parents then creates children
 - GA: Selects a few parents, creates children and continues until enough children created

Genetic Algorithm Flow



Genetic Algorithm Pseudocode

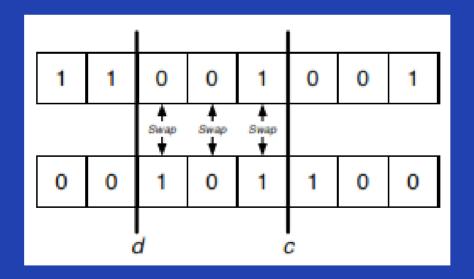
1: popsize ← desired population size

```
\triangleright This is basically \lambda. Make it even.
```

```
2: P \leftarrow \{\}
 3: for popsize times do
      P \leftarrow P \cup \{\text{new random individual}\}
 5: Best \leftarrow \Box
 6: repeat
         for each individual P_i \in P do
 7:
              AssessFitness(P_i)
 8:
              if Best = \Box or Fitness(P_i) > Fitness(Best) then
 9:
                  Best \leftarrow P_i
10:
     Q \leftarrow \{\}
                                                                       \triangleright Here's where we begin to deviate from (\mu, \lambda)
11:
         for popsize/2 times do
12:
              Parent P_a \leftarrow \text{SelectWithReplacement}(P)
13:
              Parent P_h \leftarrow \text{SelectWithReplacement}(P)
14:
              Children C_a, C_b \leftarrow \text{Crossover}(\text{Copy}(P_a), \text{Copy}(P_b))
15:
              Q \leftarrow Q \cup \{ \mathsf{Mutate}(C_a), \mathsf{Mutate}(C_b) \}
16:
                                                                                                            End of deviation
         P \leftarrow O
17:
18: until Best is the ideal solution or we have run out of time
19: return Best
```

Cross-over and Mutation

- Key to GA is in the breeding phase
 - Select with Replacement (next slide)
 - Crossover
 - Mixing/Matching parts of parents to form children



©2012 St. John's University of Tanzania

SelectionWithReplacement

- Reinforces the "fittest" parents
- Not everyone selected to be parents
 - Fitness-proportionate selection
 - Random pick, but more fit get more
 - Stochastic Universal Sampling
 - Adds bias so fittest get selected AT LEAST once

Total Fitness Range	0 s	Total Fitness Range	0								s	4
Individuals Sized by Fitness	1 2 3 4 5 6 7 8	Individuals Sized by Fitness		1	2	3	4	5		6 7	8	l
		Start Range (here n = 8)										
		n Chosen Individuals Begins within the Start Range		1 1		3	4	5	5	7	8	

References / Further Reading

- Luke, Sean. Essentials of Metaheuristics, 1st Ed. http://cs.gmu.edu/~sean/book/metaheuristics/, 2009-2011, Ch 3.
- Rao, Singiresu S. Engineering Optimization: Theory and Practice, 3rd Ed. New Dehli: New Age International (P) Ltd, 2010, Ch 12.7, pp 676-678.
- Baudin, Michael and Vincent Couvert. *Optimization in Scilab*. Paris: Scilab Consortium, 2010, Chapter 5.
- Weise, Thomas. *Global Optimization*. www.it-weise.de, 2009, Ch 3-4.
- Scilab is available for free, non-commercial use at www.scilab.org