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Metaheuristics

● Recall heuristic methods find “good 
enough” solutions by successively 
improving on the current solution

● Two categories
● Trajectory methods – a single solution
● Population methods – multiple, simultaneous 

solutions
● We've seen trajectory methods with 

Simulated Annealing and Tabu Search
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Population Methods

● Differ from trajectory methods
● Maintain a sample of candidate solutions rather than a 

single candidate solution

● Changes to one solution affect them all
● Poor solutions rejected / new created
● Remaining solutions tweaked for improvement

● Most mimic biological systems
● Evolutionary Computation → Evolutionary Algorithm

– Evolution Strategies
– Genetic Algorithms
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Common Terms
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Abstraction Generational EA
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Population Initialization

● Create λ individuals “at random”
● Likely to know “good” regions so

● Bias random generation to favor those regions
● Seed initial population with specific individuals

● Do not overly bias / seed, random is good
● Do not include duplicates in the population

● Techniques simplify that
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Evolutionary Strategy: μ, λ 

Mutate = Tweak

● Developed by Ingo Rechenberg and Hans-Paul Schwefel at 
the Technical University of Berlin in the mid 1960s.
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The Knobs for Tweaking

● The μ, λ algorithm has 3 knobs to adjust
● Size of λ

– Sample size of each population
● Size of μ, the number of parents selected

– How selective is the algorithm
● μ/λ low means more exploitative, only the best survive

● Degree of Mutation
– Larger the noise in the tweaking, the more random the 

children, regardless of selectivity μ
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Mutation

● May be considered unary reproduction
● Hence some children are recombinations of two 

parents and some are mutations of a single 
parent

● Decision variables converted to a string of 
binary digits

● Mutation is random changing of bits in the 
string, i.e. the bits are like chromosomes
● Example 4-bit integer, 10 → 1010 
● Mutate one bit to 1110  → 14
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Evolutionary Strategy: μ + λ
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Strategy Difference

● First case, μ, λ  
● Children replace parents

● Second case, μ + λ 
● High-fit parents persist

● 2nd is more exploitative, but with a risk
● Sufficiently fit parent may defeat others in the 

population and solution may converge too 
quickly to a local minimum, not a global
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Genetic Algorithm

● Invented in 1970's by John Holland, 
University of Michigan

● Similar to μ, λ EA
● Difference in how selection and breeding 

take place
● EA: Selects parents then creates children
● GA: Selects a few parents, creates children and 

continues until enough children created 
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Genetic Algorithm Flow
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Genetic Algorithm Pseudocode
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Cross-over and Mutation

● Key to GA is in the breeding phase
● Select with Replacement (next slide)
● Crossover

– Mixing/Matching parts of parents to form children
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SelectionWithReplacement

● Reinforces the “fittest” parents
● Not everyone selected to be parents

● Fitness-proportionate selection
– Random pick, but more fit get more

● Stochastic Universal Sampling
– Adds bias so fittest get selected AT LEAST once
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