Optimization Theory MT 610

2011/12 Semester I

Dynamic Programming

22 January 2012

©2012 St. John's University of Tanzania

Dynamic Programming

- An approach to making sequential, interrelated decisions in an optimal way
 - Multistage Decision Problems / Sequential Decision Problems
- Method is *recursive*
 - Adding information to a stack at each step
 - Stopping when certain conditions are met
 - Removing the information in the proper sequence
- Optimize part of the problem, then use that solution to optimize a slightly larger problem. Keep increasing the size of the problem until it encompasses the original problem. (Ex: *Dykstra's shortest path algorithm*)

Characteristics

- Stages
- *States* at each Stage
- *Decision* at each Stage
 - Decision updates the State for the next Stage
 - Optimum decision for remaining Stages is *independent* of decisions at previous Stages
- *Recursive relationship* between value of decision at current Stage and the value of optimum decisions at earlier stages
- Often stages are sequenced in time, hence the name dynamic programming. Optimizing the answer to the "What next?" question

Recursion

- Shortest path example
 - Shortest path to node i = minimum { Shortest path to solved nodes j + Distance from j to I}
 - Shortest path on both sides
- New optimum derived from old optimum along with some local value
- Recursive relation can be addition, multiplication or even something more abstract and general

Formulating the Solution

- What are the *stages* in the solution?
- How is the *state* defined at a stage?
- What kind of *decision* must you make at a stage?
- How does the decision *update* the state for the next stage?
- What is the *recursive* value relationship between the optimum decision at a stage and a previous optimum decision?

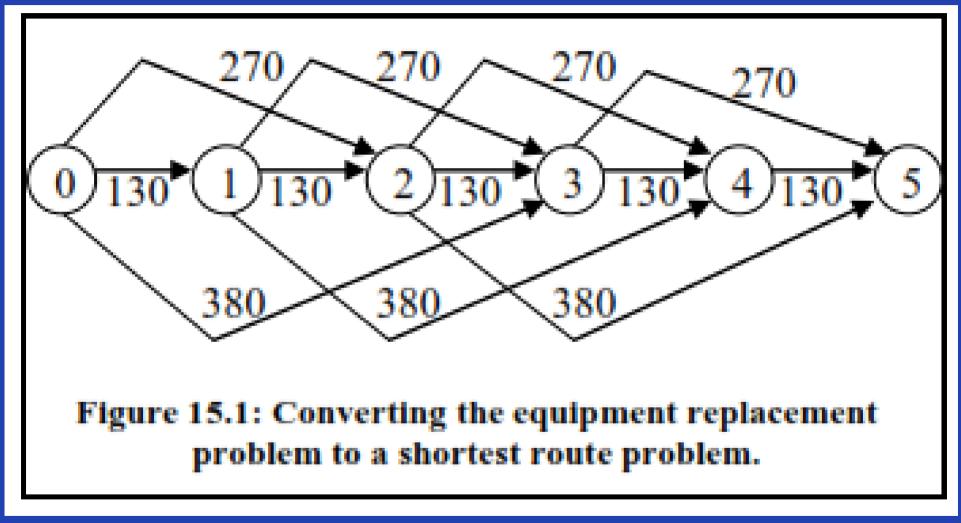
More on Recursion

- Dynamic Programming most often involves backward recursion
 - Consider this starting at the last step in a decision process and working back to the initial decision
- Why backward?
 - Sometimes *must* be done that way
 - Employee scheduling: need a certain number at the last stage, so don't need to evaluate paths that won't get there

Example 1

- Equipment Replacement (Chinneck, 2010, Ch15, p3)
 - Objective function
 - cost of ownership =
 - acquisition + maintenance scrap value
 - Stages = time frames, overall & incremental
 - Decision = buy or keep at each stage
 - End stage = must have a functioning piece of equipment at the end of the overall time frame
- Specific case: Bicycle over five years
- Recursion is additive

Example 1 as Shortest Path



From Chinneck, 2010, p5.

©2012 St. John's University of Tanzania

Example 2

- Simultaneous Failure (Chinneck, 2010, Ch15, p9)
 - Objective function
 - Failure probability at any location = product of the failure probability at each location
 - Stages = locations
 - Decision = backups to assign to each stage
 - End stage = assign all the available backups
- Specific case: Hard drives
- Recursion is multiplicative

Example 2 Data

		Location		
		Α	B	С
backup	0	0.20	0.30	0.40
drives	1	0.10	0.20	0.25
assigned	2	0.05	0.10	0.15

$$f_{t}(d_{t}) = min_{x_{t}}[p_{t}(x_{t}) \times f_{t+1}(d_{t} - x_{t})]$$

$d_{\rm C}$	$x_{\rm C}=0$	$x_{\rm C}=1$	$x_{\rm C}=2$	$f_{\rm C}(d_{\rm C})$
0	0.4	-	-	0.4
1	0.4	0.25	-	0.25
2	0.4	0.25	0.15	0.15

Solution: Assign all the backups to location A, which has the worst failure rate.

$d_{\rm B}$	$x_{\rm B}=0$	$x_{\rm B}=1$	$x_{\rm B}=2$	$f_{\rm B}(d_{\rm B})$	$d_{\rm C} = d_{\rm B} - x_{\rm B}$
0	0.12	-	-	0.12	0
1	0.075	0.080	-	0.075	1
2	0.045	0.050	0.040	0.040	0

d _A	$x_{\rm A}=0$	$x_A=1$	$x_A=2$	$f_{\rm A}(d_{\rm A})$	$d_{\rm B} = d_{\rm A} - x_{\rm A}$
2	0.0080	0.0075	0.0060	0.0060	0

Efficiency

- Seemed tedious in our examples
- Efficient compared to brute force
 - Think of all the initial choices that would *not* lead to the correct final conclusion
- Example: 5 nodes to get to 6 stages, with each stage fully connected
 - 5⁵ = 3125 possible paths x 5 ops/ea = 15,625
 - Dykstra's algorithm = 105 operations
 - 105/15,525 = 0.7% of the work!

References / Further Reading

- Chinneck, John W. Practical Optimization: A Gentle Introduction. Ontario: Carleton University, 2011, Chapter 15.
 - Found at www.sce.carleton.ca/faculty/chinneck/po.html
- Rao, Singiresu S. Engineering Optimization: Theory and Practice, 3rd Ed. New Dehli: New Age International (P) Ltd, 2010, Chapter 9, pp 515-556.