
22 January 2012 ©2012 St. John's University of Tanzania 1 of 12

Optimization Theory
MT 610

2011/12 Semester I

Dynamic Programming

22 January 2012 ©2012 St. John's University of Tanzania 2 of 12

Dynamic Programming

● An approach to making sequential, interrelated decisions
in an optimal way
● Multistage Decision Problems / Sequential Decision Problems

● Method is recursive
● Adding information to a stack at each step
● Stopping when certain conditions are met
● Removing the information in the proper sequence

● Optimize part of the problem, then use that solution to
optimize a slightly larger problem. Keep increasing the
size of the problem until it encompasses the original
problem. (Ex: Dykstra's shortest path algorithm)

22 January 2012 ©2012 St. John's University of Tanzania 3 of 12

Characteristics

● Stages
● States at each Stage
● Decision at each Stage

● Decision updates the State for the next Stage
● Optimum decision for remaining Stages is independent of

decisions at previous Stages

● Recursive relationship between value of decision at
current Stage and the value of optimum decisions at
earlier stages

● Often stages are sequenced in time, hence the name
dynamic programming. Optimizing the answer to the
“What next?” question

22 January 2012 ©2012 St. John's University of Tanzania 4 of 12

Recursion

● Shortest path example
● Shortest path to node i =

minimum { Shortest path to solved nodes j +
 Distance from j to I}

● Shortest path on both sides

● New optimum derived from old optimum
along with some local value

● Recursive relation can be addition,
multiplication or even something more
abstract and general

22 January 2012 ©2012 St. John's University of Tanzania 5 of 12

Formulating the Solution

● What are the stages in the solution?
● How is the state defined at a stage?
● What kind of decision must you make at a

stage?
● How does the decision update the state for

the next stage?
● What is the recursive value relationship

between the optimum decision at a stage
and a previous optimum decision?

22 January 2012 ©2012 St. John's University of Tanzania 6 of 12

More on Recursion

● Dynamic Programming most often involves
backward recursion
● Consider this starting at the last step in a

decision process and working back to the
initial decision

● Why backward?
● Sometimes must be done that way

– Employee scheduling: need a certain number at the
last stage, so don't need to evaluate paths that
won't get there

22 January 2012 ©2012 St. John's University of Tanzania 7 of 12

Example 1

● Equipment Replacement (Chinneck, 2010, Ch15, p3)
● Objective function

– cost of ownership =
 acquisition + maintenance – scrap value

● Stages = time frames, overall & incremental
● Decision = buy or keep at each stage
● End stage = must have a functioning piece of

equipment at the end of the overall time frame

● Specific case: Bicycle over five years
● Recursion is additive

22 January 2012 ©2012 St. John's University of Tanzania 8 of 12

Example 1 as Shortest Path

From Chinneck, 2010, p5.

22 January 2012 ©2012 St. John's University of Tanzania 9 of 12

Example 2

● Simultaneous Failure (Chinneck, 2010, Ch15, p9)

● Objective function
– Failure probability at any location =

 product of the failure probability at each location
● Stages = locations
● Decision = backups to assign to each stage
● End stage = assign all the available backups

● Specific case: Hard drives
● Recursion is multiplicative

22 January 2012 ©2012 St. John's University of Tanzania 10 of 12

Example 2 Data

f t(d t)=minx t [pt (xt)× f t+1(d t−xt)]

Solution:
Assign all the
backups to location
A, which has the
worst failure rate.

22 January 2012 ©2012 St. John's University of Tanzania 11 of 12

Efficiency

● Seemed tedious in our examples
● Efficient compared to brute force

● Think of all the initial choices that would not
lead to the correct final conclusion

● Example: 5 nodes to get to 6 stages, with
each stage fully connected
● 55 = 3125 possible paths x 5 ops/ea = 15,625
● Dykstra's algorithm = 105 operations
● 105/15,525 = 0.7% of the work!

22 January 2012 ©2012 St. John's University of Tanzania 12 of 12

References / Further Reading

● Chinneck, John W. Practical Optimization:
A Gentle Introduction. Ontario: Carleton
University, 2011, Chapter 15.
● Found at

www.sce.carleton.ca/faculty/chinneck/po.html
● Rao, Singiresu S. Engineering Optimization:

Theory and Practice, 3rd Ed. New Dehli: New
Age International (P) Ltd, 2010, Chapter 9,
pp 515-556.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

