Optimization Theory MT 610

2011/12 Semester I

Dynamic Programming

Dynamic Programming

- An approach to making sequential, interrelated decisions in an optimal way
- Multistage Decision Problems / Sequential Decision Problems
- Method is recursive
- Adding information to a stack at each step
- Stopping when certain conditions are met
- Removing the information in the proper sequence
- Optimize part of the problem, then use that solution to optimize a slightly larger problem. Keep increasing the size of the problem until it encompasses the original problem. (Ex: Dykstra's shortest path algorithm)

Characteristics

- Stages
- States at each Stage
- Decision at each Stage
- Decision updates the State for the next Stage
- Optimum decision for remaining Stages is independent of decisions at previous Stages
- Recursive relationship between value of decision at current Stage and the value of optimum decisions at earlier stages
- Often stages are sequenced in time, hence the name dynamic programming. Optimizing the answer to the "What next?" question

Recursion

- Shortest path example
- Shortest path to node i = minimum \{ Shortest path to solved nodes j + Distance from j to I\}
- Shortest path on both sides
- New optimum derived from old optimum along with some local value
- Recursive relation can be addition, multiplication or even something more abstract and general

Formulating the Solution

-What are the stages in the solution?

- How is the state defined at a stage?
- What kind of decision must you make at a stage?
- How does the decision update the state for the next stage?
- What is the recursive value relationship between the optimum decision at a stage and a previous optimum decision?

More on Recursion

- Dynamic Programming most often involves backward recursion
- Consider this starting at the last step in a decision process and working back to the initial decision
- Why backward?
- Sometimes must be done that way
- Employee scheduling: need a certain number at the last stage, so don't need to evaluate paths that won't get there

Example 1

- Equipment Replacement (Chinneck, 2010, ch15, p3)
- Objective function
- cost of ownership = acquisition + maintenance - scrap value
- Stages = time frames, overall \& incremental
- Decision = buy or keep at each stage
- End stage = must have a functioning piece of equipment at the end of the overall time frame
- Specific case: Bicycle over five years
- Recursion is additive

Example 1 as Shortest Path

Figure 15.1: Converting the equipment replacement problem to a shortest route problem.

From Chinneck, 2010, p5.

Example 2

- Simultaneous Failure (chinneck, 2010, ch15, p9)
- Objective function
- Failure probability at any location = product of the failure probability at each location
- Stages = locations
- Decision = backups to assign to each stage
- End stage = assign all the available backups
- Specific case: Hard drives
- Recursion is multiplicative

Example 2 Data

$f_{t}\left(d_{t}\right)=\min _{x_{t}}\left[p_{t}\left(x_{t}\right) \times f_{t+1}\left(d_{t}-x_{t}\right)\right]$

d_{C}	$x_{\mathrm{C}}=0$	$x_{\mathrm{C}}=1$	$x_{\mathrm{C}}=2$	$f_{\mathrm{C}}\left(d_{\mathrm{C}}\right)$
0	$\mathbf{0 . 4}$	-	-	0.4
1	0.4	$\mathbf{0 . 2 5}$	-	0.25
2	0.4	0.25	0.15	$\mathbf{0 . 1 5}$

Solution:
Assign all the backups to location A, which has the worst failure rate.

d_{B}	$x_{\mathrm{B}}=0$	$x_{\mathrm{B}}=1$	$x_{\mathrm{B}}=2$	$f_{\mathrm{B}}\left(d_{\mathrm{B}}\right)$	$d_{\mathrm{C}}=d_{\mathrm{B}}-x_{\mathrm{B}}$
0	$\mathbf{0 . 1 2}$	-	-	0.12	0
1	$\mathbf{0 . 0 7 5}$	0.080	-	0.075	1
2	0.045	0.050	$\mathbf{0 . 0 4 0}$	0.040	0

d_{A}	$x_{\mathrm{A}}=0$	$x_{\mathrm{A}}=1$	$x_{\mathrm{A}}=2$	$f_{\mathrm{A}}\left(d_{\mathrm{A}}\right)$	$d_{\mathrm{B}}=d_{\mathrm{A}}-x_{\mathrm{A}}$
2	0.0080	0.0075	$\mathbf{0 . 0 0 6 0}$	0.0060	0

Efficiency

- Seemed tedious in our examples
- Efficient compared to brute force
- Think of all the initial choices that would not lead to the correct final conclusion
- Example: 5 nodes to get to 6 stages, with each stage fully connected
- $5^{5}=3125$ possible paths $\times 5$ ops/ea $=15,625$
- Dykstra's algorithm = 105 operations
- $105 / 15,525=0.7 \%$ of the work!

References / Further Reading

- Chinneck, John W. Practical Optimization: A Gentle Introduction. Ontario: Carleton University, 2011 , Chapter 15.
- Found at
www.sce.carleton.ca/faculty/chinneck/po.html
- Rao, Singiresu S. Engineering Optimization: Theory and Practice, $3^{[d}$ Ed. New Dehli: New Age International (P) Ltd, 2010, Chapter 9, pp 515-556.

