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Dynamic Programming

● An approach to making sequential, interrelated decisions 
in an optimal way
● Multistage Decision Problems / Sequential Decision Problems

● Method is recursive
● Adding information to a stack at each step
● Stopping when certain conditions are met
● Removing the information in the proper sequence

● Optimize part of the problem, then use that solution to 
optimize a slightly larger problem. Keep increasing the 
size of the problem until it encompasses the original 
problem. (Ex: Dykstra's shortest path algorithm)
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Characteristics

● Stages
● States at each Stage
● Decision at each Stage

● Decision updates the State for the next Stage
● Optimum decision for remaining Stages is independent of 

decisions at previous Stages

● Recursive relationship between value of decision at 
current Stage and the value of optimum decisions at 
earlier stages

● Often stages are sequenced in time, hence the name 
dynamic programming. Optimizing the answer to the 
“What next?” question
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Recursion

● Shortest path example
● Shortest path to node i =

minimum { Shortest path to solved nodes j + 
                  Distance from j to I}

● Shortest path on both sides

● New optimum derived from old optimum 
along with some local value

● Recursive relation can be addition, 
multiplication or even something more 
abstract and general
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Formulating the Solution

● What are the stages in the solution?
● How is the state defined at a stage?
● What kind of decision must you make at a 

stage?
● How does the decision update the state for 

the next stage?
● What is the recursive value relationship 

between the optimum decision at a stage 
and a previous optimum decision?
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More on Recursion

● Dynamic Programming most often involves 
backward recursion
● Consider this starting at the last step in a 

decision process and working back to the 
initial decision

● Why backward?
● Sometimes must be done that way

– Employee scheduling: need a certain number at the 
last stage, so don't need to evaluate paths that 
won't get there
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Example 1

● Equipment Replacement (Chinneck, 2010, Ch15, p3) 
● Objective function 

– cost of ownership = 
           acquisition + maintenance – scrap value

● Stages = time frames, overall & incremental
● Decision = buy or keep at each stage
● End stage = must have a functioning piece of 

equipment at the end of the overall time frame

● Specific case: Bicycle over five years
● Recursion is additive
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Example 1 as Shortest Path

From Chinneck, 2010, p5.
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Example 2

● Simultaneous Failure (Chinneck, 2010, Ch15, p9)

● Objective function 
– Failure probability at any location = 

       product of the failure probability at each location
● Stages = locations
● Decision = backups to assign to each stage
● End stage = assign all the available backups

● Specific case: Hard drives
● Recursion is multiplicative
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Example 2 Data

f t(d t)=minx t [ pt (xt)× f t+1(d t−xt)]

Solution: 
Assign all the 
backups to location 
A, which has the 
worst failure rate.
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Efficiency

● Seemed tedious in our examples
● Efficient compared to brute force

● Think of all the initial choices that would not 
lead to the correct final conclusion

● Example: 5 nodes to get to 6 stages, with 
each stage fully connected
● 55 = 3125 possible paths x 5 ops/ea = 15,625
● Dykstra's algorithm = 105 operations
● 105/15,525 = 0.7% of the work!
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