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Metaheuristics

 Recall heuristic methods find “good
enough” solutions by successively
improving on the current solution

* Two categories
» Trajectory methods - a single solution

* Population methods - multiple, simultaneous
solutions

» We've seen trajectory methods with
Simulated Annealing and Tabu Search
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Population Methods

« Differ from trajectory methods

» Maintain a sample of candidate solutions rather than a
single candidate solution

» Changes to one solution affect them all
» Poor solutions rejected / new created
« Remaining solutions tweaked for improvement
* Most mimic biological systems
» Evolutionary Computation — Evolutionary Algorithm

- Evolution Strategies
- Genetic Algorithms
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Common Terms

individual

child and parent

population

fitness

fitness landscape

fitness assessment or evaluation
selection

mutation

recombination or crossover

breeding

genotype or genome
chromosome

gene

allele

phenotype
generation
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a candidate solution

a child is the Tweaked copy of a candidate solution (its parent)
set of candidate solutions

quality

quality function

he fitness of an individual

ividuals based on their fitness

plain Tweaking. This is often thought as “asexual” breeding.
A special Tweak which takes two parents, swaps sections of
them, and (usually) produces two children. This is often
thought as “sexual” breeding.

producing one or more children from a population of parents
through an iterated process of selection and Tweaking (typically
mutation or recombination)

an individual’s data structure, as used during breeding

a genotype in the form of a fixed-length vector

a particular slot position in a chromosome

a particular setting of a gene

how the individual operates during fitness assessment

one cycle of fitness assessment, breeding, and population re-
assembly; or the population produced each such cycle
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Abstraction Generational EA

Algorithm 17 An Abstract Generational Evolutionary Algorithm (EA)

1
2

SwE e m e

P« Build Initial Population

Best + O > O means “nobody yet”
repeat
AssessFitness(P)
for each individual P, € P do
if Best = O or Fitness(P;) = Fitness(Best) then 1> Remember, Fitness is just Quality
Best «— P,

P« Join(P, Breed(P))

- until Best is the ideal solution or we have run out of time

return Best
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Population Initialization

Create A individuals “at random”

Likely to know “good” regions so

* Bias random generation to favor those regions
» Seed initial population with specific individuals
Do not overly bias / seed, random is good
Do not include duplicates in the population
» Techniques simplify that
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Evolutionary Strategy: p, A

Developed by Ingo Rechenberg and Hans-Paul Schwefel at
the Technical University of Berlin in the mid 1960s.

jt + number of parents selected
A & number of children generated by the parents

®oe

P {)
4 for A times do & Build Initial Population
5 P« PU {new random individual}

6: Best + O
T
8

repeat
for each individual T, € P do

9: AssessFitness(P;)
10: if Best = O or Fitness(P,) > Fitness(Best) then
11 Best +— P
12 Q « the p individuals in P whose Fitness( ) are greatest & Truncation Selection
1B Pe |} > Join is done by just replacing P with the children
14 for each individual Q; € Q do
15: for A/t times do
16: P P {Mutate(Copy(Q)))} Mutate = Tweak

17: until Best is the ideal solution or we have run out of time
18: return Best
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The Knobs for Tweaking

» The y, A algorithm has 3 knobs to adjust

e Size of A
- Sample size of each population
e Size of y, the number of parents selected
- How selective is the algorithm
« p/A low means more exploitative, only the best survive
» Degree of Mutation

- Larger the noise in the tweaking, the more random the
children, regardless of selectivity p
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Mutation Strategy Difference

« May be considered unary reproduction * First case, y, A
* Hence some children are recombinations of two  Children replace parents
parents and some are mutations of a single S d +A
parent econd case, y
- Decision variables converted to a string of * High-fit parents persist
binary digits « 2" is more exploitative, but with a risk
e Mutation is random changing of bits in the - Sufficiently fit parent may defeat others in the
string, i.e. the bits are like chromosomes population and solution may converge too

« Example 4-bit integer, 10 — 1010 quickly to a local minimum, not a global

* Mutate one bitto 1110 — 14
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Evolutionary Strategy: pu + A Genetic Algorithm
1 ber of ts selected : '
2 {‘\ g:d:ﬁbi:zf cp:\rlzrles‘nsgeice;ted by the parents * Invented In ] 970 S byJOhn HOIIandl
el University of Michigan
4: for A ti d . .
5 * P ~.I—mJ'e‘s\..l {Dnew random individual } b SI mi |ar tO p, )\ EA
6: Best +— O
7orepeat « Difference in how selection and breeding
8 for cach individual P, € P do
9 AssessFitness(F;) take place
10 if Best = O or Fitness(P,) > Fitness(Best) then
1 Best « P, . . .
12 () + the y individuals in P whose Fitness( ) are greatest EA SeleCtS parents then creates Chlldren
> ¢ The Joi is the only diff ith (i, A) . H
I o ey individual Q, € 0 do P Tl Join eperstion = the caly elffsrence with G4 * GA: Selects a few parents, creates children and
15 for A/t times do continues until enough children created
16. P« P1J {Mutate(Copy(Q;))}

17: until Best is the ideal solution or we have run out of time
18: return Best
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Genetic Algorithm Flow

Reproduction Selection
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Genetic Algorithm Pseudocode

1: popsize +— desired population size t This is basically A. Make it even

2P+ {}

3 for popsize times do

4 P + P U {new random individual}
5: Best + O
6:
T
8

repeat
for each individual P; € P do
AssessFitness(F;)

g if Best = O or Fitness(P;) > Fitness(Best) then
10 Best + P,
11 Q+{} = Here's where we begin to deviate from (p, A)
12 for popsize/2 times do
13 Parent P, « SelectWithReplacement(P)
14 Parent P, + SelectWithReplacement(P)
15: Children C,,C;, +— Crossover(Copy(F;), Copy(F;))
16: Q + QU {Mutate(C,), Mutate(C,) }
17. P+Q t> End of deviation

18: until Best is the ideal solution or we have run out of time
19: return Best
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Cross-over and Mutation

» Key to GA is in the breeding phase
» Select with Replacement (next slide)

e Crossover
- Mixing/Matching parts of parents to form children

| 1 | 1 0 | 0 | 1 1] | 0 ‘ 1 |
T
wig  Smep  Swan
L
| 0 | opf1 | 0 | 1 1 | 0 ‘ 0 |
d c
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SelectionWithReplacement

» Reinforces the “fittest” parents
» Not everyone selected to be parents
« Fitness-proportionate selection
- Random pick, but more fit get more

« Stochastic Universal Sampling
- Adds bias so fittest get selected AT LEAST once

Total Fitness Range 0 s Total Fitness Range 0 s
Indiviciuals 3
Individuals S e r— AERD s [s]] =
s T o] s Je[] & ] sotammpn o] s T4 e[l e ]
StanRangs 0 =
=5
nChosen Individuals &+ e+ e aa
Gagn wanin e Srtangs | 3 4 8 5 7 &
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