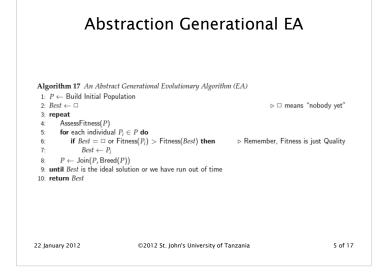

	Optimization Theory MT 610	
	2011/12 Semester I	
	Evolutionary Algorithms	
22 January 2012	©2012 St. John's University of Tanzania	1 of 17
L		

Population Methods Differ from trajectory methods Maintain a sample of candidate solutions rather


- Maintain a sample of candidate solutions rather than a single candidate solution
- Changes to one solution affect them all
- Poor solutions rejected / new created
- Remaining solutions tweaked for improvement
- Most mimic biological systems
 - Evolutionary Computation \rightarrow Evolutionary Algorithm
 - Evolution Strategies
 - Genetic Algorithms

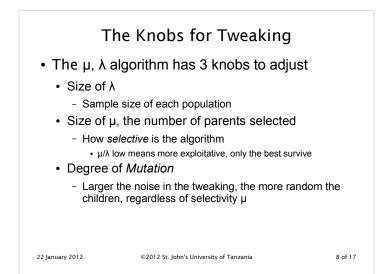
22 January 2012

©2012 St. John's University of Tanzania

3 of 17

Common Terms				
individual	a candidate solution			
child and parent	a child is the Tweaked copy of a candidate solution (its parent)			
population	set of candidate solutions			
fitness	quality			
fitness landscape	quality function			
fitness assessment or evaluation	computing the fitness of an individual			
selection	picking individuals based on their fitness			
mutation	plain Tweaking. This is often thought as "asexual" breeding.			
recombination or crossover	A special Tweak which takes two parents, swaps sections of			
	them, and (usually) produces two children. This is often			
	thought as "sexual" breeding.			
breeding	producing one or more children from a population of parents			
	through an iterated process of selection and Tweaking (typically			
	mutation or recombination)			
genotype or genome	an individual's data structure, as used during breeding			
chromosome	a genotype in the form of a fixed-length vector			
gene	a particular slot position in a chromosome			
allele	a particular setting of a gene			
phenotype	how the individual operates during fitness assessment			
generation	one cycle of fitness assessment, breeding, and population re-			
	assembly; or the population produced each such cycle			
22 January 2012 ©2	012 St. John's University of Tanzania 4 of 17			

Population Initialization


- Create λ individuals "at random"
- Likely to know "good" regions so
 - Bias random generation to favor those regions
 - Seed initial population with specific individuals
- Do not overly bias / seed, random is good
- Do not include duplicates in the population
 - Techniques simplify that

6 of 17

Evolutionary Strategy: μ , λ

• Developed by Ingo Rechenberg and Hans-Paul Schwefel at the Technical University of Berlin in the mid 1960s.

1:	$\mu \leftarrow$ number of parents sele	ted			
2:	$\lambda \leftarrow$ number of children gen	erated by the parents			
2.	$P \leftarrow \{\}$				
	$r \leftarrow \{\}$ for λ times do		 Ruild Initi 	ial Population	
	$P \leftarrow P \cup \{\text{new random in}\}$		D Build Init	iai Population	
		idividual}			
	$Best \leftarrow \Box$				
	repeat				
8:	for each individual $P_i \in I$	o do			
9:	AssessFitness (P_i)				
10:		$s(P_i) > Fitness(Best)$ then			
11:					
12:		P whose Fitness() are greated		tion Selection	
13:	$P \leftarrow \{\}$	⊳ Join is	done by just replacing P with	h the children	
14:	for each individual $Q_j \in$	Q do			
15:	for λ/μ times do				
16:	$P \leftarrow P \cup \{Mutate$	$(Copy(Q_j))$	Mutate = Tweak		
17:	until Best is the ideal solution	n or we have run out of tim	e		
18:	return Best				
22 Janua	ary 2012	©2012 St. John's Univ	ersity of Tanzania		7 of 17
22 Junio		02012 50 joint 5 0110	croity of Funzania		/ 0/ //

- May be considered unary reproduction
 - Hence some children are recombinations of two parents and some are mutations of a single parent
- Decision variables converted to a string of binary digits
- Mutation is random changing of bits in the string, i.e. the bits are like chromosomes
 - Example 4-bit integer, $10 \rightarrow 1010$
 - Mutate one bit to $1110 \rightarrow 14$

```
22 January 2012
```

©2012 St. John's University of Tanzania

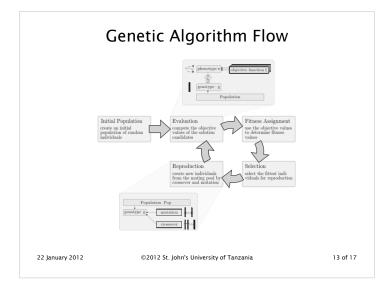
```
9 of 17
```

Evolutionary Strategy: $\mu + \lambda$ 1: $\mu \leftarrow$ number of parents selected 2: $\lambda \leftarrow$ number of children generated by the parents 3: $P \leftarrow \{\}$ 4 for λ times do 5: $P \leftarrow P \cup \{\text{new random individual}\}$ 6: Best $\leftarrow \Box$ 7: repeat 8: for each individual $P_i \in P$ do AssessFitness(P_i) 9 if $Best = \Box$ or $Fitness(P_i) > Fitness(Best)$ then 10: $Best \leftarrow P_i$ 11: 12: $Q \leftarrow \text{the } \mu \text{ individuals in } P \text{ whose Fitness() are greatest}$ \triangleright The Join operation is the only difference with (μ, λ) 13: $P \leftarrow Q$ 14: for each individual $Q_i \in Q$ do 15: for λ/μ times do $P \leftarrow P \cup \{\mathsf{Mutate}(\mathsf{Copy}(Q_i))\}$ 16: 17: until Best is the ideal solution or we have run out of time 18. return Best

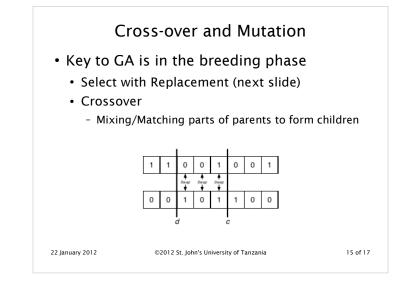
22 January 2012 ©2012 St. John's University of Tanzania

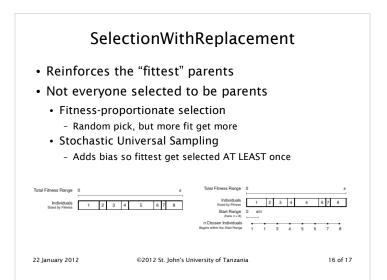
10 of 17

Strategy Difference


- First case, μ, λ
 - · Children replace parents
- Second case, $\mu + \lambda$
 - High-fit parents persist
- 2nd is more exploitative, but with a risk
 - Sufficiently fit parent may defeat others in the population and solution may converge too quickly to a local minimum, not a global

```
22 January 2012
```


©2012 St. John's University of Tanzania


11 of 17

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-row><table-row></table-row>

	Gene	tic Algor	ithm Pseudo	ocode
1:	$\textit{popsize} \leftarrow desired \ p$	population size	⊳ This is ba	sically λ . Make it even.
2:	$P \leftarrow \{\}$			
3:	for popsize times de	D		
4:	$P \leftarrow P \cup \{new\}$	random individual}		
5:	$Best \leftarrow \Box$			
6:	repeat			
7:	for each individ	ual $P_i \in P$ do		
8:	AssessFitnes	$s(P_i)$		
9:		or Fitness(P _i) > Fitness	(Best) then	
10:	$Best \leftarrow 1$	Pi		
11:	$Q \leftarrow \{\}$		▷ Here's where we begin	to deviate from (μ, λ)
12:				
13:		 SelectWithReplacemen 		
14:		 SelectWithReplacement 		
15:		$C_b \leftarrow \text{Crossover}(\text{Copy})$		
16:	$Q \leftarrow Q \cup \{$	Mutate(C _a), Mutate(C _b)	}	
17:	$P \leftarrow Q$			End of deviation
		al solution or we have r	un out of time	
19:	return Best			
22 Janı	uary 2012	©2012 St. John	's University of Tanzania	14 of 17

References / Further Reading

- Luke, Sean. *Essentials of Metaheuristics*, 1st Ed. http://cs.gmu.edu/~sean/book/metaheuristics/, 2009-2011, Ch 3.
- Rao, Singiresu S. *Engineering Optimization: Theory and Practice*, 3rd Ed. New Dehli: New Age International (P) Ltd, 2010, Ch 12.7, pp 676-678.
- Baudin, Michael and Vincent Couvert. *Optimization in Scilab.* Paris: Scilab Consortium, 2010, Chapter 5.
- Weise, Thomas. *Global Optimization*. www.it-weise.de, 2009, Ch 3-4.
- Scilab is available for free, non-commercial use at www.scilab.org

```
22 January 2012
```

©2012 St. John's University of Tanzania

17 of 17